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Summary

A general randomizatica model for experiments in block designs is recalled and conditions are
given for obtaining the best linear unbiased estimators under the model. Since the conditions appear
to be severely restrictive, a resolution of the model into three effective submodels is considered.
Conditions for obtaining the best linear unbiased estimators under these submodels are found. In
particular, it is shown under which conditions the best linear unbiased estimators for a contrast of
treatment parameters are obtainable from both the intra- and the inter-block analysis, and when they
estimate unbiasedly the same contrast. Finally, the efficiency factors of the design for the estimation
of a contrast in the two analyses are considered.

1. Introduction and preliminaries

In a series of papers by Kala (1989, 1990, 1991), published in this journal, elements of the
randomization theory have been exposed, with special reference to designed experiments. In
particular, in the last paper (Kala, 1991) a randomization model for block experiments has
been considered and the existence under this model of the best linear unbiased estimators of
treatment parametric functions has been discussed. The discussion has alsc been extended to
the submodels that underlie the intra-block and inter-block analysis of Yates (1940). It is the
aim of the present paper to continue the discussion and to clarify some points related to these
two analyses, the inter-block analysis in particular. Some of the difficulties concerning the
inter-block submodel have been considered and explained by Kala (1991, Section 6), but it
seems that further results related to this model may be of interest for those who want to utilize
the inter-block analysis.

Key words: best linear unbiased estimation, block designs, efficiency factor, inter-block
analysis, intra-block analysis, minimum norm quadratic estimation, randomization
model
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To make the approach adopted in the present paper more comprehensible, some of the
basic results given in an earlier paper (Caliriski and Kageyama, 1988) have to be repeated.
There is, however, a slight difference in defining the intra- and inter-block submodels between
the earlier approach (adopted also by Kala, 1991) and that used here. In the present paper
the randomization model is resolved not in two, as earlier, but into three submodels. This
resolution reflects better the natural stratification of the experimental units, and also is more
in the spirit of the general theory of the analysis of randomized experiments introduced by
Nelder (1965a, 1965b). This way of resolving a randomization model has already been used
in some papers published in this journal, e.g. by Ceranka, Chudzik and Mejza (1991).

The important problem of combining results obtainable from the intra-block and the
inter-block analysis is not discussed in the present paper, as it deserves a separate examination
and exposition.

The notation and terminology of the present paper follows essentially that used by Pearce
(1983, Chapter 3). Thus, a block design is described by its vxb incidence matrix N, from
which r = N1, and k = N’l, are obtainable as column vectors of treatment replications and
of block sizes, respectively, giving n=1}r= 1,k as the number of units, or plots, used in
the experiment (1, and 1, being vectors of ones, of indicated dimensions). The matrix N can
be defined as N = AD’, where A’ is the nxv design matrix for treatments, and D’ is the nxb
design matrix for blocks. These matrices provide the diagonal matrices r>=AA’ and
k®= DD’ that are used in some formulae, as also their inverses r° and k™ are. If, by proper

will be assumed that N is formed in such a way that the above notation applies.

Furthermore, distinction is made between the potential number of blocks, N , from which
a choice can be made, and the number, b, of those actually chosen for the experiment. The
usual situation is that b= Npg , but in general b < Ny . Also, it will be convenient to distinct
between the potential (available) number of units within a block, denoted by K (with a
subscript), and the number of those actually used in the experiment, denoted by & (with a
subscript).

2. A randomization model

According to one of the basic principles of experimental design, the units are to be
randomized before they enter the experiment. Suppose that the randomization is performed
as described by Nelder (1954), by randomly permuting blocks within a total area of them
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and by randomly permuting units within the blocks. Then, assuming the usual unit-treatment
additivity , and also assuming, as usual, that the technical errors are uncorrelated, with zero
expectation and a constant variance, independent of the treatments in particular, the model
of the variables observed on the n units actually used in the experiment can be written in
matrix notation as

y=At+DB+n+e, 2.1)

where y is a vector of observed variables, T is a vector of treatment parameters, B is a vector
of block random effects, 1 is a vector of unit errors and e is a vector of technical errors.
Properties of the model (2.1) can be obtained by following its derivation from the randomi-
zations involved.

2.1. Derivation of the model

Suppose that there are N blocks, originally labelled § = 1,2,...,Np ,and that block £ contains
Ky units (plots), which are originally labelled = 1,2,....K; . The label may also be written
as n(€) , if it is desirable to refer it to block & . The randomization of blocks can then be
understood as choosing at random a permutation of numbers 1,2,...,Np , and then renumbering
the blocks with j=1,2,... Ny according to the positions of their original labels taken in the
random permutation. Similarly, the randomization of units within block & can be seen as
selecting at random a permutation of numbers 1,2,...K¢ , and then renumbering the units of
the block with /= 1,2,....K; according to the positions of their original labels taken in the
random permutation. It will be assumed here that any permutation of block labels can be
selected with equal probability, as well as that any permutation of unit labels within a block
can be selected with equal probability. Furthermore, it will be assumed that the randomiza-
tions of units within the blocks are among the blocks independent, and that they are also
independent of the randomization of blocks.

Following Nelder (1965a), it is useful first to consider a model appropriate for analysing

experimental data under the assumption that all the ZZ" K units receive the same treatment,
=1

no matter which. The concept of such a "null" experiment makes the derivation of the final
model more simple. It needs, however, the assumption that the treatments under consideration
are additive in the sense that the variation of the responses among the available experimental
units does not depend on the treatment received (see Nelder, 1965b, p. 168; White, 1975, p.
560; also Kala, 1990, p. 36).

For this null experiment let the response of the unit labelled m(§) be denoted by Hr) » and
let it be denoted by my; if by the randomizations the block originally labelled & receives

label j and the unit originally labelled 7 in this block receives label /. Introducing the linear
identity

e =H. )+ () = B + ey — (L) »

where (according to the usual dot notation)
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K, N,
1 1
Re=Kg Y M and no=Ng' Y he »
=1 &1

and the variance components defined as (see Nelder, 1977)

N,

0'% 3 (NB-I)-I EZ (u.(g)—u.(.))z
=1

and

with

o= Ke= 1" Y (e~ )
@)1

and also the weighted harmonic average K}, defined as

NB
Ki'=Ng' Y Ki'oyz /o,
E=1
one can write the linear model
my=n+ B+ My (2.2)

for any / and j, where p1 = W, is a constant parameter, while B; and n; are random variables,
the first representing a block random effect, the second a unit error. The following moments
of these random variables are easily obtainable:

E(B.I)=O . E(T][(j))=0, COV(BJ’, n’U’))ZO 5 whether Fj, or j¢j, o

Nz (Ng—op  if j=

COV(ﬂj*Bf)z ey ¥} g 3 Jj,
-Npog ifj#

and

Ky (Ky—1)oy, if j=f and I=F',
Cov(nyg) - M) = ——K,_,'O?/ if j=f" and I#l’,
AT A S
(For detailed derivations see Califiski and Kageyama, 1988.)
Thus, the responses {m,@} in the null experiment have the model (2.2) with
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E(my;) =p 23)
and ‘
Cov(mygy, mp) = (8 — Ng') 05 + 8,8y — K)oy (24)

where the &’s are the usual Kronecker deltas, taking value 1 when the indices in the subscript
coincide and 0 otherwise.

To continue the derivation, it should be noticed that when observing the responses of the
units in reality, any observation may be affected by a "technical error" (see Neyman,
Iwaszkiewicz and Kotodziejczyk, 1935; Kempthorne, 1952, pp.13Z and 151; Scheffé, 1959,
p.293; Ogawa, 1963). Denoting the technical error affecting the observation of the response
on the (randomized) unit /(j) by e(; , the model of the variable observed on that unit in the
null experiment can be written as

Yigy =M+ ey =R+ B+ Ny + ey 2.5)

for any j and /. It may usually be assumed that the technical errors {910)} are uncorrelated,
with zero expectation and a constant variance, and that they are independent of the the block
effects {B j} and of the unit errors {n ,0)} . On account of these assumptions and of the propérties
established for (2.2), the first and second moments of the random variables {y,w} defined in
(2.5) have the forms

E(yg) =1

and

Cov(yig Yriy = O — Ng')og + 88y — Ki)oy + 81,'51:03 , (2.6)

for all /(j) and all /'(j’) .

Note that the moments of [y,(,)} in the null experiment do not depend on the labels received
by the blocks and their units in result of the randomizations. This means that the Np
randomized blocks can be regarded as "homogeneous" and that the set of units randomized
within a block can be regarded as svch, in the sense that the observed responses of the units
may, under the same treatment, be considered as observations on random variables {y,(,)}
exchangeable within a block and also jointly in sets among the blocks, provided the sets are
of a size not exceeding the smallest K; . In fact, to make this concept more feasible one
would prefer to have all the K¢ equal (as demanded by Bailey, 1981, Section 2.2), but this
is not necessary for the derivation of the model.

Because of thc homogeneity of blocks and that of units within blocks, in the sense given
above, the randomization principle can be applied to a block experiment designed according
to a chosen incidence matrix N by adopting the following rule. The b columns of N are
assigned to b out of the Ny available blocks of experimental units by assigning the j-th
co'amn of N to that block which due to the randomization is labelled j. Then the treatments
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indicated by the j-th column of N are assigned to the experimental units of the block labelled
J> in numbers defined by the corresponding elements of N and in the order determined by
the labels the units of the block have received due to the randomization. This rule (which
covers that used by Rao, 1959, p. 328) implies not only that 5 <N, but also that the units
in the available blocks are in sufficient numbers with regard to the vector k = N1, (see also
Kala, 1991,p. 14). This means that either the choice of N is to be conditioned by the constraint
that none of its k;’s exceeds the smallest K¢ , or an adjustment of N is to be made after the
randomization of blocks (as suggested by White, 1975, p.558).

Now, adopting the assumption of complete additivity, as mentioned earlier, i.e. assuming
that the variances and covariances of the random variables {Bj}, {11 I(D} and {e,(,)} do not depend
on the treatment applied, the adjustment of the model (2.6) to a real situation of comparing
several treatments in the same experiment can be made by changing the constant term only.
Thus, the model gets the form

Vi@ = @) + B; + My + ey, 2.7
(=120y; j= 12,005 1G)=12,..k),

with
N, K,
EDiyd] = 1G) =N5' D, K'Y, Hae ), 28)
&=1 nE)=1

where L¢)(7) is the true response of unit 7 in block & to treatment i, and with

Covlyiy (@), yrg @) =Covlyyg, » Yriy (2.9)

as given in (2.6).

Finally, writing the observed variables {y,w(i)} in form of an nx1 vector y, and the
corresponding unit error and technical error variables in form of nx1 vectors 1 and e,
respectively, and also writing the treatment parameters as T = [T1.75....,T,]" , where T;= pu(i),
and the block variables as B= [B,,B,,....8,]" , one can express the model (2.7) in the matrix

notation as given in (2.1), and the corresponding moments (2.8) and (2.9) in form of the
expectation vector

E(y)=A1 (2.10)
and the dispersion matrix (covariance matrix)
Cov(y) = (DD - N3'1,1;)05 + (I, ~ K3 D'D)oy, + L7 @11)

respectively.
The model (2.1), with properties (2.10) and (2.11), coincides with that of Patterson and
Thompson (1971) when their matrix I’ in the formula
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Cov(y) = (DTD +1,)0° (2.12)

is taken equal to I,y—N3'1,1,0% /o, where y=(0%—Kjo02)/6> and 6*=05+0>.In
fact they have considered a simplified model with T'=1I,y in (2.16). Furthermore, if
ky=k,=...=ky=k (say), b=Np and k=Ky (the latter implying the equality of all K¢) ,
then the present model becomes equivalent to that considered by Rao (1959) and by Roy and
Shah (1962), except that the latter authors do not take the technical error into account. Also,
in its general form, the present model coincides exactly with that recently obtained by Kala
(1991, Section 5) under more general considerations.

2.2. Main estimation results

Under the present model the following main results concerning the linear estimation of
treatment parametric functions are obtainable.

Theorem 2.1. Under the model (2.1), with its properties (2.10) and (2.11), a function w’y
is uniformly the best linear unbiased estimator (BLUE) of ¢’z if and only if w=A’s , where
s=rc satisfies the condition

K= NTN)N’s=0 (2.13)

Proof. By Theorem 3 of Zyskind (1967), a function w’y is, under the considered model,
the BLUE of its expectation, i.e. of w’At , if and only if

@, - Po)[(D’D - N3'1,1,)05 + 4,—K5 D'D)oy + Lo lw =0, (2.14)

where Py, = A’r A denotes the orthogonal projector on C(A”) , the column space of A” . If

this is to hold uniformly for any values of the variance components cf;, 0%, and 03 ,itis
necessary and sufficient that (I, — P,)w=0 and (I,— P,)D’Dw =0 . But these equations
hold simultaneously if and only if w=A’s and (I,—P,)D'DA’s=0 for some s, the latter
equation being equivalent to (2.13). QO

In connection with this proof it may be noted that the component Nj' 1,,1:,0% in (2.11)
does not play any role in establishing Theorem 2.1, since (I, — P4-)1,=0 . For the same
reason the simplification of I" in (2.12) to the form I,;y, made by Patterson and Thompson

(1971), does not affect the BLUE of ¢’z . (For more general considerations see Kala, 1981,
Theorem 6.2).

Corollary 2.1. For the estimation of ¢'t= §'r°t under the model as in Theorem 2.1, the
following applies.

(a) If N’s = 0, then (2.13) is satisfied and the estimated function is a contrast, i.e.,
¢h=sgE=0¢

(b) If N’s # 0 , then to satisfy (2.13) it is necessary and sufficient that the elements of N's
obtained from the same connected subdesign are all equal, i.e., that
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N'se C {diag[lbl,lbz,...,l,,‘]} .

Preof. Result (a) is obvious, with ¢’1,=0 from N1,=r . To prove (b), note that (2.13) is
equivalent to the condition N NN’s = k®N’s , which in case of a connected design is
satisfied if and only if N'se C (1,) . A straightforward generalization of this leads to the
result, applicable to any N = diag[N,, N,,...,N,] withg>1. QO

Now a question arises, under which design conditions any function s’Ay is the BLUE
of its expectaticn. This can be answered as follows.

Theorem 2.2. Under the model as in Theorem 2.1, any function w’y = s’Ay, i.e. with any s,
is uniformly the BLUE of E(w’y) = s if and only if

(1) the design is orthogonal (in the sense of Darroch and Silvey, 1963) and

(ii) the block sizes of the design are constant within any of its connected subdesigns.

Proof. From the proof of Theorem 2.1 it is evident that s’Ay is the BLUE of its expectation
for any s if and only if

@,- P, )D'DA’ = 0. (2.15)

The equality (2.15), however, implies that kN’ =Nr°NN’ , from which k is to be an
eigenvector of N'r°N with respect to K corresponding to the eigenvalue 1. But, as it
follows from the proof of Corollary 2.1(b), for this it is necessary and sufficient that condition
(ii) holds. On the other hand, if (ii) is satisfied, then the matrix k° (defined in Section 1) can
be used to show that the equality (2.15) is equivalent to the equality (I, — P,)D’k °DA’ = 0,
which in turn can be shown (see Seber, 1980, Section 6.2) to be equivalent to (i). Thus,
(2.15) implies (ii) and (i), subsequently, and, vice versa, (i) and (ii) imply (2.15). Q

Remark 2.1. Note that condition (i) of Theorem 2.2 is equivalent to the condition
N=NK NN given by Chakrabarti (1962), which for a connected design reduces to
N=n"'rk’,as given by Pearce (1970). If (ii) of Theorem 2.2 holds, then the orthogonality
condition can be written as N =k °NN’r°N in genera!, and as N = (k/n)r1}, for a connected
design. Also note that the two conditions of Theorem 2.2 coincide with condition (5.12) of
Theorem 3 given by Kala (1991).

Remark 2.2 1f conditions (i) and (ii) stated in Theorem 2.2 are satisfied, i.e., if (2.15) holds,
then

Cov(y) A" =A'[(r NN’ - N3'1,r")ap + (I, - K r°NN')o?, + 1,62],

which implies that both A’s and Cov(y)A’s belong to € (A”) for any s, and thus, by Theorem
4 of Zyskind (1967), the BLUEs obtainable under the model (2.1), with the moments (2.10)
and (2.11), can equivalently be obtained under a simple alternative model in which the
covariance matrix (2.11) is replaced by the identity matrix I, multiplied by a positive scalar.

[See also Rao and Mitra , 1971, Section 8.1]. Moreover, it can be shown (applying, e.g.,
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Theorem 2.3.2 of Rao and Mitra, 1971) that the equality (2.15) is not only a sufficient but
also a necessary condition for the BLUES obtainable under the two alternative models to be
the same. In other words, (2.15) is a necessary and sufficient condition for s’Ay to be both
the simple least squares estimator (SLSE) and the BLUE of its expectation, s'r’t , whichever
vector s is used. This coincides virtually with Theorem 3 of Kala (1991).

3. Resolving into effective submodels

Results of Section 2 sound discouraging, as in many designs the BLUEs will exist under
the model (2.1) for only a few parametric functions of interest, or for none of them. For
example, in the case of a balanced incomplete block (BIB) design none of the contrasts of
treatment parameters will have the BLUE (on account of Corollary 2.1).

The apparent difficulty with the model (2.1) can be evaded by resolving it into three
submodels (two for the contrasts), in accordance with the stratification of the experimental
units. In fact, the units of a block experiment can be seen as being grouped according to a
nested classification with three "strata". Adopting the terminology used by Pearce (1983,
p.109), these strata may be specified as follows:

Ist stratum — of units within blocks, called "intra-block”,

2nd stratum — of blocks within the total area, called "inter-block",

3rd stratum — of the total area.

Due to this stratification, the observed vector y can be decomposed as

Y=Y tY2tys » 3.1)

where each of the three components is related to one of the strata. The component vectors
Yo » @=123, are thus obtainable by projecting y orthogonally on relevant subspaces,
mutually orthogonal. The first component in (3.1) can be written as

i=¢y 3.2)
where
¢ =1,-DkD=Py, (33)
(so @;=¢ in the notation of Pearce 1983, Section 3.1), i.e., y, is the orthogonal projection
of yon ¢*(D’) , the orthogonal complement of ¢ (D’) . The second component is
Y2=9 (34)
where

®=DKkD-n"1Ll'=Py-P, , (3.5)

i.e., y, is the orthogonal projection of y on c*(1,)nc (D) , the orthogonal complement of
c(,) in c(D’). The third is
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Y3=@a3y, (3.6)
where
@;=n"L1,=P, , (3.7
i.e., y; is the orthogonal projection of y on C(1,) . Evidently, the three matrices (3.3), (3.5)
and (3.7) satisfy the conditions
Pa=Po> PoPo=Pu » PP =0 for aza’, (3.8)

where o,0”=1,2,3, and the condition
P+t @3=1,, (3.9)
the third equality in (3.8) implying, in particular, that
¢D'=0 and @,1,=0 for a=1.2. (3.10)

The resulting projections (3.2), (3.4) and (3.6) can be considered as submodels of the overall
model (2.1). They are of particular interest when the condition (2.13) is not satisfied. The
submodel (3.2) leads to the intra-block analysis, while (3.4) to the inter-block analysis . The
submodel (3.6) underlies the total-area analysis, suitable mainly for estimating the general
parametric mean.

3.1. The intra-block submodel
The submodel (3.2) has the properties

E(y,)=@AT=AT- D'k DAT @3.11)
and
Cov(y,) =@,(c} +07) . 3.12)

From them, the main result conceming estimation under (3.2) can be stated as follows.

Theorem 3.1. Under (3.2), a function w'y; =wg,y is uniformly the BLUE of ¢’z if and
only if @,w= @,A’s , where the vectors ¢ and s are in the relation ¢=A@,A’s (i.e.c=Cs
in the notation of Pearce, 1983, Sections 3.1-3.3, where A@,A”"= r’ -~ NkN’ is denoted by
C, as usual).

Proof. Under (3.2), with (3.11) and (3.12), the necessary and sufficient condition for a
function wy, =w'@,y to be the BLUE of E(w’y;) = w'@,A'T is, on account of Theorem 3
of Zyskind (1967), the equality

{. - P(plA’)q)lw =0 .
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It is satisfied if and only if @,w=¢,A’s for some s. But E(s’Ay,) = s’A@,A’t . Hence the
relation for ¢ and s follows. Q

Remark 3.1. Since 1,A@; =0, from (3.10), the only parametric functions for which the
BLUEs may exist under (3.2) are contrasts.

If ¢t is a contrast, and the condition of Theorem 3.1 is satisfied, then the variance of its
BLUE under (3.2), i.e. of ¢t =s"Ay, , is of the form

Var(c’n) = SAQA's(0} + 02) = ¢ (A@,A) e(ch + 0D) (3.13)
where (A@,A’)” is any generalized inverse (g-inverse) of the matrix C =A@,A” (see also
Pearce, 1983, p. 62).

Remark 3.2. Since Cov(y,)@,A’=@,A’(G}+02) , which implies that both @,A’s and
Cov(y,)@,A’s belong to Cc(q,A") for any s, it follows from Theorem 3.1, on account of

Theorem 4 of Zyskind (1967), that the BLUEs under the submodel (3.2), with the moments
(3.11) and (3.12), can equivalently be obtained under a simple alternative model in which

the covariance matrix (3.12) is replaced by that of the form I,,(c%, + of) , i.e., that §¥Aq,y
is both the SLSE and the BLUE of its expectation, for any s. (See also Kala, 1991, p. 20.)

From Remark 3.2 it follows, in particular, that the BLUE of the expectation vector (3.11)
can be obtained by a simple least squares procedure (see, e.g., Seber, 1980, Chapter 3), in
the form

ﬁ(y )= PrplA’y 1

where Py v = @A (AQA") A, = ¢;A'C"A@, . Furthermore, it follows that the vector y; can
be decomposed as
Y1=Pyay1+ @, — Py )y, (in terms of y;)
=Poay+ (@1~ Pya )y (in terms of y).
(See also Rao, 1974, Section 3.)

Taking the squared norm on both sides of the above decomposition of y;, one can write

lly, 11%= 1Pg sy, 112+ X, = P o Dy, IZ

This provides the intra-block analysis of variance, which in terms of the observed vector y
can be expressed in a more customary way as

Yoy=y @A CAQ y+y(g - 9ACAQ)y=Q,'CQ +ywy,
where Q,=A@y (= Q in the notation of Pearce, 1983, Section 3.1) and
v, =QA'CAp, =¢,(I,-A'CA)g, (=v, the "residual matrix" used by Pearce, 1983, Sec-
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tion 3.3). The quadratic form y’@;y can be called the intra-block total sum of squares, and

its components, QICQ, and yw,y, can then be called the intra-block treatment sum of
squares and the intra-block residual sum of squares, respectively. The corresponding degrees
of freedom (d.f.) are n — b = rank(e,) for the total, 4 = rank(C) for the treatment component
and n—b— h=rank(y,) for the residual component. It can easily be proved (by , e.g.,
Theorem 9.4.1 of Rao and Mitra, 1971) that the two component sums of squares are distributed
independently. The expectations of these component sums of squares are [according to
formula (4a. 1.7) in Rao, 1973]

E(Q(C Q) = h(ch +02) + TCt
and
E(y'w,y) = (n—b—h)(0} + 02) .

It follows from the latter that the intra-block residual mean square s2 = y'y,y/(n—b—h) is an
unbiased estimator of o7 = o} + 62, Moreover, s} is the minimum norm quadratic unbiased
estimator (MINQUE) of Gf under the submodel (3.2), as it may be seen from Theorem 3.4

of Rao (1974).
Thus, sf can be used to obtain an unbiased estimator of the variance (3.13), in the form
A A
Var(c't) = s'Css? = ¢’'C cs?.

Furthermore, since under the multivariate normal distribution of y, and hence of y, , both
QiCQy/o} and y'w,y/o} have x* distributions, the first on 4 d.f. with the noncentrality

parameter § = UC/o7, the second on n—b—h d.f. with &=0 (as can be proved applying,

e.g., Theorem 9.2.1 of Rao and Mitra, 1971), the hypothesis T'Ct=0, equivalent to
E(y;))=0 [or E(y)e c(D")], can be tested by the variance ratio criterion

K'QICTQy/s?,

which under the normality assumption has then the F distribution with 4 and n—b—h d.f.,
central when the hypothesis is true.

3.2. The inter-block submodel
As to the submodel (3.4), it has the properties
E(y,) = pAT=DkDAT-n"'1,r't (3.14)
and

Cov(yy) = (@, — n"'1,1,)D'DA, - n~'1,1,,)(0} - K71 05) + @,(05 + 07)
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= DDy} - K3 07) + 90y + 02). (3.15)
The main estimation result under (3.4) can be expressed as follows.

Theorem 3.2. Under (3:4), a function w'y,=w'@,y is uniformly the BLUE of ¢t if
and only if @w=q,A’s, where the vectors ¢ and s are in the relation
c=AQA’s (=NokNjs), and s satisfies the condition

Ko — No (Nok Nj) NolNgs =0, (3.16)
or the equivalent condition
Ko — Nor No(NgrNg) K,INgs = 0, 3.17)
where Ko=k®—n'kk’ and No=N-n"'rk’ (= A in Pearce, 1983, p.97).

Proof. Under (3.4), with (3.14) and (3.15), the necessary and sufficient condition for a
function w’y,=w @,y to be the BLUE of E(w’y,) = w'@,A’T is, on account of Theorem 3
of Zyskind (1967), the equality

(@ - Py »)[@,D'D@y(0; — K3 07) + @,(07 + 02)lw = 0.
It holds uniformly if and only if the equalities
I-Pyr)p;w=0 and (I-P, IA,)%D'quw =)

hold simultaneously. The first equality holds if and only if @,w=@,A’s for some s, which
holds if and only if Dg,w = D@,A’s for that s. With this, the second equality reads

(I, — Py 2)9,D'D@A’s =0,

which is equivalent to (3.16) due to the relations D’k D@, = @,, Dg,D’=K,, Ag,D’'=N,
and A@,A’ = Nok'sNi,. That the conditions (3.16) and (3.17) are equivalent can be checked
by utilizing the equality Nj(Nok ™ Nj) Nk Nj= Nj= NyrNy(Nor °Ng) N, obtainable
from Lemma 2.2.6(c) of Rao and Mitra (1971), and by noting that Nok'5K0 = Np. Finally,
the relation between ¢ and s follows from the fact that E(s’A y,) = sNok Nyt 0

Corollary 3.1. For the estimation of ¢'t = s'Nok >Nyt under (3.4) the following applies:

(a) The case Nys =0 is to be excluded.

(b) If Ngs #0 , then ¢t is a contrast, and to satisfy (3.16) or (3.17) by the vector s it is
necessary and sufficient that K Ngs € ¢ (NorNy) = C(ND.

(c) If s is such that r's=0, then the conditions (3.16) and (3.17) can be replaced by

KoN’s = Ny (Nok Ny NoN's (3.18)
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and

KoN’s = NorNy(No r°Ny) K, N's, (3.19)
respectively. To satisfy any of them it is then necessary and sufficient that
KoN’s € c(Np.

(d) The condition (ii) of Theorem 2.2 is sufficient for satisfying the equality (3.19), and
hence (3.18), by any vector s, thus being sufficient for the equalities (3.16) and (3.17) to be
satisfied by any s.

Proof. The result (a) is obvious, as Nys=0 implies ¢=0. To prove (b) note that

01,=0 and that the equation Njr°Ngx = KN is consistent if and only if (3.17) holds
[see Theorem 2.3.1(d) of Rao and Mitra, 1971]. Alternatively, note that the equation
Nox = K¢Njs is consistent if and only if (3.16) holds, since (Nok_‘SNf)"Nok'8 can be used
as a g-inverse of Nj. The result (c) is obvious, as Ngs=N’s if r's=0. The result (d) can
easily be checked by using Lemma 2.2.6(c) of-Rao and Mitra (1971) and the relation
KoN’=Nyk®, held under the condition (ii) of Theorem 2.2, with the matrix k° defined as
in Section 1, and further by noting that Nj= N'(I - n”'1,r"). Q

A
Now, it may be noted that if the conditions of Theorem 3.2 are satisfied, then ¢t = s'Ay,
is the BLUE of the contrast ¢t under (3.4), and that its variance has the form

A
Var(c't) = s'NgNys(03 — Ki7' 67) + Nok *Njs(c? + o2). (3.20)
Evidently, if k; =k, =... =k, =k, the variance (3.20) reduces to
o i , 2 S I )
Var(c't) =k 's'NgNgs[k o + (1 — K7 k) o7 + 62, (3.21)

or alternatively to
A
Var(c't) = ¢'(K'NgNy ¢ [k o5 + (1 - K7'k) 05 + 62 ],
which coincides with the formula given by Pearce (1983, p. 80) whenk = K ' and the technical

error is not taken into account.

Remark 3.3.For vectors s such that r’s =0, the condition of Theorem 3.2 is less restrictive
than that of Theorem 2.1, as any such s satisfying (2.13) satisfies also the condition (3.19),
while that satisfying (3.19) must not necessarily satisfy (2.13).

An answer to the question what is necessary and sufficient for the condition of Theorem
3.2 to be satisfied by any s can be given as follows.

Corollary 3.2. The condition (3.16) holds for any s, i.e. the equality

K Nj= Nj(NokNY NN, (3.22)
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holds, if and only if for any bx1 vector t that satisfies the equality Nyt=0 the equality
NoKot = 0 holds as well.

Proof. From Corollary 3.1(b), the condition (3.16) is satisfied by any s if and only if
C(KNp c c(Ny). But this inclusion holds if and only if c*(Nj) < c*(K,Np) or,
equivalently, A/(Ny) = A\(NoK,) [since ¢ *(A)=A((A") for any matrix A, i.e. the ortho-
gonal complement of the column space of a matrix A is the null space of the transpose of

A; see, e.g., Seber, 1980, Lemma 1.2.1]. Evidently, the last inclusion means that for any
vector t for which Nyt =0 the equality NjK,t =0 also holds. O

To see the applicability of Corollary 3.2, it will be helpful to examine the following two
examples taken from Pearce (1983, p.102 and p.117).

Example 3.1. Consider a design with the incidence matrix

Lad:dinbadeil
111111
B by e o G B
N ppegng: i) gl
011010
001110
From it,
o S| S, (R O, T
T, P N W P )
new kb2 Qa2 0 2, 2
°“ 1012 0-2 0-2 2
et e ol gl L
Mhasi T4 0B ey
and

136121204=156 =20 °=156" *136
136 20 -156 20 -156 136
1| 136 20 -156 20 -156 136
150| 136 20 -156 20 -156 136
—ZI27835" (31235 312 272
=272 335 73125415 812 (=272

Taking, e.g., t=[-1,2,-1,2-1-1]" it can be seen that Nyt=1[0,0,0,0,0,0]" , while
NoKt = 107'[8,8,8,8,~16,~16]". Thus, this design does not satisfy the condition of Corollary
3.2, and hence (3.16) does not hold for any s.

NoKo =

Example 3.2. Consider a design with
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1100

1100

l1100

N=l1011]"

0111

0011

from which

6 g o
R % 36 36 36
i b sk ol w236 WBnsi8burdh
No=74 2-12 5 5| ™ NK=231 79 29 30 30
12 9t s s 79 19 30 30
8 -8 8 8 48 48 48 48

The matrix N, above is of rank 2, and hence the dimension of the null space of Nj is 2.
From definitions, Ng1,=0 and NoK,1,=0. Also, taking t=[0,0,—-1,1]° one obtains both
Not=0 and NoKot=0, which shows that the condition of Corollary 3.2 is satisfied. Thus,
in this example the equality (3.16) holds for any s. This implies that the design provides
under the model (3.4) the BLUE for any contrast ¢'t = s'Nok'sN{,‘t, i.e. for any ¢t such that

ce C(Nk°Np . Here

18 "1 18" —15=15"-24
18 18 18 -15 -15 -24

S8 g s s Lsi=n4
Nok™"No= 881-15 " -15 =15V 2% |9 20] *

SIS S GRS SE 20
-24 -24 -24 20 20 32

and so the columns of this matrix span the subspace of all contrasts (of the vectors ¢
representing them) for which the BLUEs under the inter-block model exist. The dimension
of this subspace is 2. The reader can check that also the equivalent condition (3.17) holds
for any s in this example.

Remark 3.4. (a) Since Nyl,=0 and NyK,1,=0 always, the necessary and sufficient
condition for the equality (3.22) can be replaced by the condition that Nt,=0 implies
Nokato =0 for any vector t, being ks-orthogonal to 1, , i.e. such that k’ty=0. [Thus, the
condition (6.10) of Theorem 4 given by Kala (1991) is sufficient for the equality (3.22) to
hold, but it is not necessary for that, as it has been established for the projection Py y, not
for (3.4).]

(b) If rank (No)=b-1, i.e., the columns of the incidence matrix N are all linearly
independent, then a vector t that satisfies Not = 0 must be equal or proportional to 1, [i.e.,
te C(1,) ], and so satisfy also the equality NoKot = 0. Thus, the condition of Corollary 3.2
is then satisfied automatically, whatever the k; ’s are.
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Example 3.3. Consider a design (from Pearce, 1983, p. 225) for a 2* factorial structure of
treatments, with the incidence matrix

(01110000
00002111
00001211

No[00O001 121
11100000
13491 0900
10110000
0000111 2

It is a non-binary, non-proper, non-equireplicate disconnected block design. It can be seen
that the rank of N is equal here to the number of blocks (and of treatments, i.e., N is
nonsingular), and so the condition of Corollary 3.2 is satisfied on account of Remark 3.4(b).
The reader may note that the equality (3.22) holds here also on account of Corollary 3.1(d).

Remark 3.5. If the equation (3.16) holds for any s, i.e., if (3.22) holds, then
Cov(yy) @, A" = @, ATNokNg) NoNy (05K o) + 1,(0%; + 62)],

which implies that both @, A’s and Cov(y,)@, A’s belong to C(@,A”) for any s, and thus
the condition stated in Theorem 4 of Zyskind (1967), when applied to Theorem 3.2 above,
is satisfied. This means that the BLUES obtainable under the submodel (3.4), with the moments
(3.14) and (3.15), when the condition (3.22) is satisfied, can equivalently be obtained under
a simple alternative model in which, instead of (3.15), the identity matrix I, multiplied by

a positive scalar is used as the covariance matrix of y,. Moreover, it can be shown (applying,
e.g., Theorem 2.3.2 of Rao and Mitra, 1971) that the equality (3.22) is not only a sufficient
but also a necessary condition for the SLSEs and the BLUES to be the same.

Remark 3.5 implies, in particular, that if the equality (3.22) holds, then the BLUE of the
expectation vector (3.14) is obtainable by a simple least squares procedure, i.e. has the form

By =Pyum,
whereP = @,A’(Ag,A") A, Thus, the vector y, can be decomposed as
Y2=Poa¥a+ @, —Pyp)y, (in terms of y;)
=Poa Y +(9,—Pyu)y (in terms of y).
The above decomposition yields the inter-block analysis of variance, of the form
||y2|| 2= ||P¢2A:y2||2+ I @, - P%A. )y2||3

expressible in terms of the observed vector y as

Y0y =Y QA AQAYAQ,y + Y[, — A AGA) A,ly = Q;,C;Q, + Y'Wyy,
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where  Q;=Agqy, C;=A@A’ and =@ - QACAQ, = @I, -A'CA)p,
(i.e., as Qo, Cy and wyin Pearce, 1983, Section 3.8). The quadratic form y’@,y can be called

the inter-block total sum of squares, while its components, Q3 C5Q, and y"y,y, can be called
the inter-block treatment sum of squares and the inter-block residual sum of squares, respec-
tively. The corresponding d.f. are evidently b—1=rank(p,) for the total,

v—p—1=rank(C,) for the treatment component (v—p being the rank of N ) and
b — v+ p = rank(w,) = rank(@,) — rank(C,) for the residual component. It is evident that the
two component sums of squares are distributed independently. Their expectations are

E(Q3C;Qy) = trINg(Nok °NY™NoJ(03 — Kj7'0%) + (v—1-p)(6% + 6) + TCyt
and
E(y'¥y) = {tr(Ko) — tr[Nj (Nok°NY™Nol} (05 — K77 05) + (b—v+ p)(0% + 62).

It follows from the latter equality that the inter-block residual mean square
S=y@y/ (b-v+ p) is an unbiased estimator, the MINQUE in fact, of

03 = (b—v+ p) " {tr(Ko) — tr[Ny (Nok °Nj) N, I} (0} -Kg'o)+oh+02. = (323)

Incase of ky=ky=...=k, =k,
o5 =koh+ (1-K;;'k ) 0% + &%,

further reducing to k o3 + o, ifk=K u- It should be noted, however, that b—v+p=0 if
b=v—p (obviously b>v—p always). In that case no estimator for o5 exists in the
inter-block analysis.

Thus, in the case of equal k; ’s and b > v —p, the mean square 53 can be used to obtain
an unbiased estimator of the variance (3.21), in the form

A = 2 A
Var(c't) =k~ s'NgNpss; = k ¢/(NgNp) css.
In general, the estimation of (3.21) is not so simple.

Furthermore, if k; =k, = ... =k, = k, then Cov(y,) = ¢,0% and, similarly as for the intra-
block analysis, it can be shown that, under the multivariate normality assumption, both
Q3C;Q, /05 and y'wy /o3 have x* distributions, the first on v—p—1 d.f. with the non-
centrality parameter §=17C,t/ 03, the second on b—v+p d.f. with §=0. Hence, the

hypothesis T'C,;t=0, equivalent to E(y;)=0 [or Py E(y) € ¢(1,) ], can be tested by the
variance ratio criterion

v-p-1)7'Q5C5Qy/s3,
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which under the assumed normality has then the F distribution with v—p—1 d.f., central when
the hypothesis is true. This, however, does not apply to the general case, when k; ’s are not

all equal.
3.3. The total-area submodel

Considering the third submodel, (3.6), it is evident that its properties are
E(ys) = @A T=n"1,r't (3.24)
and
Cov(ys) = @s[(n 'K’k — N3 'n)oh + (1-K 7' n'k'’k)ol, + o2]. (3.25)

They lead to the following main result concerning estimation under (3.6).
Theorem 3.3. Under (3.6), a function w’y; = w'@y is uniformly the BLUE of ¢’z if and
only if @;w = @;A’s, where the vectors ¢ and s are in the relation ¢ =AQ,A’s (=1 'rr’s).
Proof. 1t follows exactly the same pattern as the proof of Theorem 3.1. QO

Remark 3.6.(a) The only parametric functions for which the BLUEs under (3.6) exist are
those defined as ¢’t=(sr)n”'r’t, i.e. the general parametric mean and its multiplicities,
contrasts being excluded a fortiori (as 1jc =r’s here ).

(b) Since Cov(y;)@A’ = @A’ [(n"'K'k — N;'n)o} + (1-K7'n'k’k)op + o2, the BLUEs
under (3.6) and the SLSEs are the same (on account of Zyskind’s, 1967, Theorem 4 applied
to Theorem 3.3).

R If ¢t=(sr)n'r't=(c’L,)n"'r’t, then the variance of its BLUE under (3.6), ie. of
c¢t=sAy,, is of the form
Var(c’t) = SAQA'S[(n 'K’k — Nj'n)o% + (1-Kj7 ' K'k)o? + 67
=n (L) [(n"K'k — N5 'n)ok + (1-K7'n'K’k)o}, + o2]. (3.26)
Evidently, if all k; are equal (=k), the variance (3.26) reduces to
A
Var(c't) = n”(¢’L,)[(1-Nj 'b)kos + (1-K ;7 kK)o + 621 ,
and if, in addition, =N and Ky =k, which may be considered as the usual case, then
A
Var(c't) = n'(¢'1,)%0%
Finally, it may be noted that since Pon= @3 (as n'1,1, is a g-inverse of

AQA’ = n"'rr’ ) and, hence, both

(I, —Pyadys= 0 and (I,—Pg,) Cov(ys) =0,
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the vector Py y y3=y3 = n~'1,1%y is itself the BLUE of its expectation, n~'1,r'1, leaving no
residuals.

3.4. Some special cases

It follows from the considerations above that any function s’Ay can be resolved into three
components in the form

SAy=sAy, +sAy, +s’A y;=s'A @,y + sA @,y + S'A @3y,
which conveniently can be written as
SAy=5'Q,+5Q,+5Q;, (3.27)

with Q,=Ay, =A@y, Q=Ay,=A@,y and Q;=A y;=A @,y. Each of the compo-
nents in (3.27) represents a contribution to s’Ay from a different stratum. The component
s’Q, may then be called the intra-block component, s’Q, the inter-block component and
s’Q; the total-area component.

In connection with formula (3.27) it is interesting to consider three special cases of the
vector s (and hence of ¢ = r% ). First, suppose that s is such that N's =0, i.e., is orthogonal
to the columns of N, which also implies that r’s =0 (i.e. 1,c¢=0). Thens’A y = s'Q, , which
means that only the intra-block stratum contributes. As the second case, suppose that s is
such that N’s# 0 but it satisfies the conditions @A’s= 0 and r's=0. Then
s’A y=s'Q,, which means that the contribution comes from the inter-block stratum only.
As the third case suppose that s € C(1,), i.e., that s is proportional to the vector 1,. Then,
on account of (3.10), s’Ay=s'Q;, which means that the only contribution is from the
total-area stratum.

Moreover, for the three cases it is instructive to observe the following. If N’s= 0, then
the condition (2.13) is satisfied. Also, if N’s# 0 but @A’s=0, which is equivalent to
A@A’s= 0, the condition (2.13) holds, provided the condition (ii) of Theorem 2.2 holds.
Finally, if se c(1,), then N’se c(k) and (2.13) is satisfied, provided

c(k)  cldiaglly, : 1, :... 1,,']},

i.e. again under the condition (ii) of Theorem 2.2. The importance of these observations is
that for the three discussed cases the BLUE obtainable under the relevant submodel (3.2),
(3.4) or (3.6), respectively , is simultaneously the BLUE of sr’t (= ¢’ ) under the overall
model (2.1), for the second and the third case, however, provided the design satisfies the
condition (ii) of Theorem 2.2. (But see also Remark 3.7.)

The present discussion can be summarized as follows.

Corollary 3.3. The function sAy is the BLUE of ¢'t=sr’t under the overall model
(2.1) in the following three cases:
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(@) N’s=0 (implying r’s=0); the BLUE is then equal to s’Q, and its variance is of the
form

Var(c't) = s'%5(0% + 0%) = ¢'r e (03 + o). (3.28)

(b) N’s# 0, but ¢,A’s= 0, and r’s=0, provided the condition (ii) of Theorem 2.2 holds;
the BLUE is then equal to s’Q, and its variance is of the form

A
Var(¢'t) = SNN's(o% — K7 6%) + 518 (03 + G2). (3.29)
(c) s=s1,, provided the condition (ii) of Theorem 2.2 holds; the BLUE is then equal to
s’Q; and its variance is of the form
Var(ct) = 1Kk - Ny n)o2 + (n-K 7' k'k) o2 + n 621, (3.30)

Proof. These results follow from the discussion above, the formulae (3.28), (3.29) and
(3.30) being obtainable directly from (2.11), but also from (3.13), (3.20) and (3.26), respec-

tively, in the last case by noting that s=n""c’l,.

Remark 3.7. For the case (b) of Corollary 3.3 it should be noticed that the conditions
@A’s= 0 and r's= 0 imply that the design is disconnected, and hence (as can be shown),
that

N’s=[s]N; : 5Ny ... i ;NI = [k} 2 5K s,k

where s;=s51, and k;= ;l‘.,. On the other hand, if the condition (2.13) is to be satisfied
as well, then, on account of Corollary 2.1(b), it is necessary and sufficient that

k;=k1, forany! such thats,# 0, (3.31)

which in turn holds if and only if the block sizes of the design are constant within any of its
connected subdesigns to which the nonzero s;’s correspond, a condition that is weaker than
(ii) of Theorem 2.2.

If (3.31) holds, then

8
. ! Q. sibk,)’
SNN's= Y stkik,= 3, stkib, 2 = , (3.32)
=1 =1 2
2 siby
=1

the equality in (3.32) evidently holding if and only if the k; ’s involved by the nonzero s;’s
are all equal (=, say). In this extreme case formula (3.29) is reduced to

Var(e'n) = s'rslk o2 + (1-K;5'K) 6% + 62] = ¢'r ¢ [k o3 + (1-K;'k) 05 + 62]. (3.33)
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Remark 3.8. For the case (c) of Corollary 3.3 it can be noted that if s=sl1,, then

N’s=sk. Hence, on account of Corollary 2.1(b), the condition (ii) of Theorem 2.2 is not
only sufficient but also necessary for the condition (2.13) to be satisfied in that case.

4. Estimating the same contrast under the intra-block and the
inter-block submodels

The discussion in Section 3.4 has revealed that under certain conditions the function
s’A 'y is the BLUE of its expectation ¢t = s'rt, the decomposition (3.27) being then reduced
to one component only. In particuler, sAy=sQ; for any se c(1,), as
1,Q,; =1,Q, = 0. On the other hand, for any s representing a contrast, i.e. for any s such
that sr=0, the component s'Q; is equal to 0 and so (3.27) is reduced to

SAy=sQ, +sQ, , 4.1

unless some additional conditions for s are met which result in reducing (4.1) further, to one
component only (Corollary 3.3).

The two components in (4.1) are uncorrelated, whatever the vector s and the matrix A are,
as there is no correlation between the vectors y, and y, in the decomposition (3.1). This is

due to the equality @;Cov(y)@,= 0, holding on account of (2.11) and the properties of @,
and ¢, shown in (3.8) and (3.10).

A question now arises under what condition the intra-block component s’Q, and the
inter-block component s'Q, estimate the same parametric function, the contrast

ct=5rr (with the accuracy to a constant factor). To answer this question note that
E(S'Q) =sAgA'T “4.2)

and

E(s'Qy) =s'A@At=sA(,—@)A'T, 4.3)
the last equality holding if s’r = 0. This implies the following.

Lemma 4.1. If s represents a contrast, then the equality E(s'Q,)=x E(s'Q,), where «x
is a positive scalar, holds for any T if and only if

AQAs=¢er’ |, with e=x/(l+x) , (4.4)
i.e., if and only if the vector s is an eigenvector of C=A@A’ with respect to r° |

corresponding to an eigenvalue € such that 0 <e < 1.

This result was originally noticed by Jones (1959). Contrasts represented by eigenvectors

of C with respect to r® were later considered by Calinski (1971, 1977), and have been called
basic contrasts by Pearce et al. (1974).



119

For any vector s satisfying the eigenvector condition (4.4), with 0 <& < 1, it follows from
Theorem 3.1 that the component s’Q; is under (3.2) the BLUE of

E$'Q))=¢ st
and has the variance
Var(s'Q,) = st (o + 02), 4.5)

while from Theorem 3.2 and Corollary 3.1(c), when (3.18) or (3.19) holds, the component
§’Q, is under (3.4) the BLUE of
E(s'Q,) = (1-€)sr’t

and has the variance

Var(s'Q,) = sNN's(c5-K;'6%) + (1-€)s'r%s (6% + 67)
= (1-e)srs [Vk2t(0% — Kj7'0%) + o5 + o7, 4.6)

where t is a k° -normalized eigenvector of NN with respect to K® corresponding to
the eigenvalue P =1-¢ and related to the vector s by the formula

t=(1-g)"%(s'r%) "k N's, @.7

and where k*®= (ks)z_ Thus, the following theorem is established.

Theorem 4.1. For any c¢= r%, where s is such that 1'c= r's=0 and (4.4) is satisfied

with 0<e<1, the BLUE of the contrast ¢’t obtainable in the intra-block analysis can be
written as

A
(€D = € '8Q, = £¢rQ,, 4.8)
with
A
Var[(¢T)a) = €7'¢r ¢ (67 + 0), @.9)

and that obtainable in the inter-block analysis, under the condition (3.18) or (3.19), as

& L% Ry s
(€D iner=1—8) "8 Q=(1-8) ¢ Q,, (4.10)
with
A
Var[(¢"Tiped = (1 - €)1 ¢ [VkPt(05-K}; 0%) + 05 + 67, 4.11)
where t is as in (4.7). If, in particular, k;=k,=...=k,=k, then the variance (4.11) gets
the form
A
Var[(¢ D] = (1 — &) ¢'r ¢ [k o5 + (1-K;7'k) 0% + o7, 4.12)

or
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A
Var[(¢ Derd = (1 - 8)'¢'r ¢ (k 05 + 07),
if in addition k=Kj.
Proof. 1t follows from the discussion preceding the theorem.
Remark 4.1.If € is nonzero but less than 1, it is said that the contrast represented by s,
i.e. ¢T=sr’, is "partially confounded" with blocks. It would be said "totally confounded"

in case of € =0. In the opposite case, when N’s=0, which corresponds to € =1, one can
say that the contrast is not confounded with blocks at all.

To give a statistical interpretation of the eigenvalue € in (4.4), it will be instructive to
suppose that, for the eigenvector s and the fixed vector r determining the contrast
¢’t= s'r> under study, there exists a design with the incidence matrix N such that
N’s = 0. Then, according to Corollary 3.3(a), s'Q, = s'Ay is the BLUE of ¢’t=sr’t under
the overall model (2.1), with the variance obtainable in the form (3.28). Comparing (3.28)
with (4.9) it becomes evident that € is the "efficiency factor" of the analysed design for the
contrast ¢t when it is estimated in the intra-block analysis, i.e. by (4.8). On the other hand,
1-€ can be interpreted as the relative "loss of information" incurred in that analysis due to
partially confounding the contrast with blocks. (This terminology is due to Jones, 1959, p.
176.) In the extreme case of € = 0 the whole information is lost when the analysis is confined
to intra-block, as then s’Q; =0. It would usually be said in this case that the contrast is
"totally confounded" in the intra-block analysis but estimated with "full efficiency" by the
inter-block analysis (see Pearce et al., 1974, p.455). In general, however, there is some
difficulty in considering 1—€ as the efficiency factor of the design for the contrast
¢’T=sr’t estimated in the inter-block analysis, i.e. by (4.10). If there exists a disconnected
design which for the vector s and the fixed vector r satisfies the condition (2.13) of Theorem
2.1 and, simultaneously, the equality A@,A’s=0 (i.e. ¢;A’s=0 ), then, on account of
Corollary 3.3(b) and Remark 3.7, it will provide s’Q, = s’Ay as the BLUE of ¢t under the
model (2.1), with the minimum variance of the form (3.33), attainable when the blocks
involved by the vector N’s are all of equal size. Now, comparing the variance formulae
(3.33) and (4.11), it becomes clear that the true inter-block efficiency factor is of the form

k o+ (1-K;;'k) 0% + &2
k%t (62-K;'02) +05 + 6%

(I1-¢)

-,

as k>t > k, provided k is taken equal to 1/tt’ = s’'Nk°N’s/s’'Nk 2>N’s. So, the coefficient
1—-¢ gives in general only the upper bound of the efficiency factor of the design for
estimating the contrast ¢"t=sr’t in the inter-block analysis. It becomes the efficiency factor

exactly if and only if 'kt =k, which holds if and only if the involved blocks are all of
equal size, i.e. when blocks to which the nonzero elements of the vector t correspond are

of the same size or, equivalently, all the blocks for which Z s;n;;# 0 are of the same size,
i=1

k.
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This difficulty with the coefficient 1 —¢ considered as an inter-block efficiency factor may
be (in addition to the difficulties discussed in Section 3.2) one of the reasons why many
authors have been reluctant to use the inter-block analysis to designs that are not of equal
block sizes (see, e.g., Pearce, 1983, Section 3.8), and why it is really justifiable to use the
term "proper design" for an equiblock- sized design.
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O randomizacyjnej teorii analizy wewngtrzblokowej i
: miedzyblokowej

Streszczenie

W pracy przypomniano ogélny model randomizacyjny dla do§wiadczeii o ukladach blokowych
i podano warunki otrzymywania najlepszych liniowych estymatoréw nieobcigzonych w tym modelu.
Poniewaz okazuje sig, ze warunki te s bardzo ograniczajace, rozwazane jest roztozenie tego modelu
na trzy efektywne podmodele. Znaleziono warunki na istnienie najlepszych liniowych estymatoréw
nieobcigzonych w tych podmodelach. W szczeg6lnosci pokazano pod jakimi warunkami takie
najlepsze estymatory kontrastu parametréw obiektowych otrzymane z analizy wewngtrzblokowe;j i
migdzyblokowej estymuja bez obciazenia ten sam kontrast. W koficu przedyskutowano zagadnienie
wspblczynnikéw efektywnosci uktadu blokowego dla estymacji kontrastu w obu tych analizach.

Stowa kluczowe: najlepsza liniowa estymacja nieobciazona, uklady blokowe, wspétczynnik
efektywnosci, analiza migdzyblokowa, analiza wewnatrzblokowa, kwadratowa esty-
macja nieobciazona o minimalnej normie, model randomizacyjny



